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Abstract

Generalized eigenvalue problems from the modal analysis are often converted to the standard eigenvalue
problems. In this paper, it evaluates the upper and lower bounds on the eigenvalues of the standard
eigenvalue problem of structures subject to severely deficient information about the structural parameters.
Here, we focus on non-probabilistic interval analysis models of uncertainty, which are adapted to the case
of severe lack of information on uncertainty. Non-probabilistic, interval analysis method in which
uncertainties are defined by interval numbers appears as an alternative to the classical probabilistic models.
For the standard eigenvalue problem of structures with uncertain-but-bounded parameters, the vertex
solution theorem, the positive semi-definite solution theorem and the parameter decomposition solution
theorem for the standard eigenvalue problem are presented, and compared with Deif’s solution theorem in
numerical examples. It is shown that, for the upper and lower bounds on the eigenvalues of the standard
eigenvalue problem with uncertain-but-bounded parameters, the presented vertex solution theorem is
unconditional, and the positive semi-definite solution theorem and the parameter decomposition solution
theorem have less limitary conditions compared with Deif’s solution theorem. The effectiveness of the
vertex solution theorem, the positive semi-definite solution theorem and the parameter decomposition
solution theorem are illustrated by numerical examples
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1. Introduction

In practical engineering and scientific researches, uncertainty in the quantities of interest is the
rule rather than exception. In particular, all engineering analysis and design problems involve
uncertainty to varying degrees. Depending on the nature of uncertainty, probabilistic and
statistical models, fuzzy mathematics, and non-probabilistic convex models and interval analysis
methods are all used to deal with uncertain problems. Probabilistic and statistical models are the
most widely used methods of dealing with uncertain problems in most engineering and scientific
researches. On the one hand, when the probability density function is known for the uncertain
variables under investigation, either from a fundamental understanding of the sources of
uncertainty or from extensive statistical measurements, this technique is very powerful and gives
well-defined results for specified levels of reliability. On the other hand, in many practical
problems in engineering and science, the sources of the uncertainty are too complex to allow
analytical determination of the probability density function, while in the same instance it is
impractical to obtain enough data to determine the probability density functions empirically. In
these situations, the probability density functions are often simply assumed by analogy to similar
problems for which probability densities are known. This leads to questionable reliability
estimates, particularly for high levels of reliability associated with the tails of the density
functions, which are most questionable for assumed probability density functions. Despite the
success of probabilistic and statistical models used for uncertain problems in most engineering
fields, one may recognize that uncertainty is not randomness; uncertain problem can be modeled
on the basis of alternative, non-probabilistic conceptual frameworks. One motivation for using
non-probabilistic convex models and interval analysis methods rather than probabilistic and
statistical models for uncertain problems is the general dearth of information in characterizing the
uncertain variable. Non-probabilistic convex models and interval analysis methods are less
information-intensive than probabilistic and statistical models, since no density information is
required. In non-probabilistic convex models and interval analysis methods, the uncertain
quantities are not modeled as random variables or stochastic processes, but are considered instead
to be unknown except that they belong to given sets in an appropriate vector space. In this case,
all information about the structural system response is provided by the set of responses consistent
with the constraints on the uncertain quantities.

Based on interval mathematics or interval analysis, interval analysis models are developed by
many researchers in order to solve uncertain problems. In this kind of models, the uncertain
variables can be quantified by an interval number or vector, the calculated result is also
interval number or vector. Interval mathematics is discussed in a number of books [1,2]. In recent
work of interval analysis models, bounds on the magnitude of uncertain variables are only
required, not necessarily knowing the probabilistic distribution densities, following the
general methodologies developed in the monographs. It was assumed that the uncertain variables
fall into the multidimensional box, instead of conventional optimization studies, where the
minimum possible response is sought, here an uncertainty modeling is developed as an anti-
optimization problem of finding the least-favorable response and the most favorable response
under the constrains within the set-theoretical description. Convex models and interval analysis
methods have been used for dealing with uncertain phenomena in a wide range of engineering
applications.
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The interval eigenvalue problem emerged in recent years as scientists and engineers started to
realize its wide applicability. Here, we make a brief review. Rohn [3] studied the standard interval
eigenvalue problem of the symmetric interval matrix and derived formulas of interval eigenvalues
when the deviation radius matrix had rank one. Hallot and Bartlett [4] found that the spectrum of
eigenvalue of an interval matrix family depends on the spectrum of its extremes sets. Hudak [5]
investigated ways of finding a constant matrix under the certain condition. Based on the
invariance properties of the characteristic vector’s entries, Deif [6] presented a method of
computing interval eigenvalues for the standard interval eigenvalue problem. Qiu et al. [7] have
extended Deif’s method to the generalized interval eigenvalue problem. Because there exists no
efficient criterion for judging invariance properties of the signs of the components of the
eigenvector under the interval operations before computing interval eigenvalues, applications of
Deif’s approach appear to be restricted. In order to eliminate the limitation of Deif’s method
about the signs of components of eigenvectors, by means of assumption of positive semi-
definiteness of the deviation radius interval matrix pair of the interval matrix pair, Qiu et al. [8]
developed a method for computing interval eigenvalues. Under small deviation radii of the
interval matrix, Qiu et al. [9] also presented an interval perturbation method for the interval
eigenvalue problem.

In this paper, considering the characteristics of the engineering structure, the vertex solution
theorem, the positive semi-definite solution theorem and the parameter decomposition solution
theorem are presented, and compared with Deif’s solution theorem by two numerical examples.
2. Problem formulation

The algebraic eigenvalue problem in finite element analysis is usually determined from the
conservative part of the structural system equations of motion whose eigenvalue equation is given
in the following matrix form:

Ku ¼ lMu; ð1Þ

where K ¼ ðkijÞ is the n� n-dimensional symmetric stiffness matrix and M ¼ ðmijÞ is the n� n-
dimensional symmetric positive definite mass matrix, l and u are the eigenvalue and the associated
eigenvector, respectively.

The eigenvalues given by Eq. (1) are usually assumed to be constants for identical structural
systems. However, experience and experiments have shown that these values vary uncertainly
because in reality the physical and geometric properties of the elements in K and M can neither be
measured exactly nor manufactured exactly. In this paper, we assume that the uncertainties in K
and M are bounded, and the uncertain-but-bounded matrices K and M can be written as the
following matrix inequality form:

K � K � K ; M � M � M ð2Þ

in which K ¼ ðkijÞ and K ¼ ðkijÞ; respectively, are the upper bound matrix and the lower bound
matrix of the uncertain stiffness matrix K, and M ¼ ðmijÞ and M ¼ ðmijÞ; respectively, are the
upper bound matrix and the lower bound matrix of the uncertain mass matrix M.
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Alternatively, the algebraic eigenvalue problem can be stated by transforming Eq. (1) into the
standard eigenvalue form

Au ¼ lu; ð3Þ

where A ¼ M�1K ¼ ðaijÞ is the n� n-dimensional structural system dynamic matrix which is
symmetric positive definite and has the uncertain-but-bounded matrix inequality form

A � A � A ð4aÞ

or the element form

aij � aij � aij ; i; j ¼ 1; 2; . . . ; n ð4bÞ

in which A ¼ ðaijÞ and A ¼ ðaijÞ; respectively, are the upper bound matrix and the lower bound
matrix of the uncertain-but-bounded structural system dynamic matrix A.

It is very difficult to solve the standard eigenvalue problem (3) under the condition of the matrix
inequality constraint conditions (4).

We will confine ourselves to the case in which the eigenvalues of A are all distinct, so that the
eigenvectors of A are all independent.

By virtue of the interval matrix notation [1,2], the matrix inequality constraint conditions can
be written as

A 2 AI ¼ ½A;A	 ¼ ðaI
ijÞ; aI

ij ¼ ½aij ; aij	; i; j ¼ 1; 2; . . . ; n; ð5Þ

where AI is the n� n-dimensional real symmetric interval matrix.
Thus, the standard eigenvalue problem (3) under the constraint conditions of the matrix

inequality (4a) can be expressed in the following compact and simple form

AI u ¼ lu: ð6Þ

Eq. (6) is called the standard interval eigenvalue problem [6].
For the sake of convenience, the standard interval eigenvalue problem may be stated as follows:

given the upper bound A ¼ ðaijÞ and lower bound A ¼ ðaijÞ of the uncertain but bounded matrix
A ¼ ðaijÞ; to find all possible eigenvalues satisfying Au ¼ lu subject to A 2 AI ¼ ½A;A	: Obviously,
the infinite number of eigenvalues constitutes a region in real number field R, which is denoted by
G, i.e.

G ¼ l : l 2 R;Au ¼ lu;A 2 AI
� �

: ð7Þ

In general, the computation of region (7) is extremely difficult, because G has a very
complicated region and needn’t be convex. Taking this into account, one has to determine a closed
convex hull ½li; li	 for each eigenvalue which is the narrowest one enclosing all possible values
satisfying the standard interval eigenvalue equation (6). Thus, the kind of the interval estimation
can be written in the following form:

li 2 lI
i ¼ ½li; li	; i ¼ 1; 2; . . . ; n ð8Þ

where

li ¼ max
A2AI

liðAÞ
� �

; li ¼ min
A2AI

liðAÞ
� �

; i ¼ 1; 2; . . . ; n ð9Þ
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in which

li ¼ liðAÞ ¼ min max
Fi
Rn u2Fi

ua0

uTAu

uTu

� �
; ð10Þ

where Fi 
 Rn is an arbitrary i-dimensional sub-space.
Obviously, the maximum and minimum eigenvalue problems in Eqs. (9) are all global

optimization problems.
3. Deif’s solution theorem

Based on the interval matrix, we may define the midpoint or nominal value or mean value of the
interval matrix AI ¼ ½A;A	

Ac ¼
ðA þ AÞ

2
¼ ðac

ijÞ; ac
ij ¼

ðaij þ aijÞ

2
; i; j ¼ 1; 2; . . . ; n ð11Þ

and the uncertain radius or deviation amplitude or uncertainty of the interval matrix AI ¼ ½A;A	

DA ¼
ðA � AÞ

2
¼ ðDaijÞ; Daij ¼

ðaij � aijÞ

2
; i; j ¼ 1; 2; . . . ; n: ð12Þ

For the standard interval eigenvalue problem of the real symmetric interval matrix, Professor
Deif once gave a solution theorem [6]. This theorem can be stated as follows:

Deif’ssolution theorem. If AI ¼ ½A;A	 ¼ ½Ac � DA;Ac þ DA	 is a real symmetric interval matrix
and the signal matrix

Si ¼ diagðsgnðu1iÞ; sgnðu2iÞ; . . . ; sgnðuniÞÞ; i ¼ 1; 2; . . . ; n ð13Þ

is constant over AI ; where ui ¼ ðukiÞ; i ¼ 1; 2; . . . ; n; are eigenvectors of A 2 AI and the eigenvectors

ui have been normalized so as to satisfy

uT
i uj ¼ dij; i; j ¼ 1; 2; . . . ; n: ð14Þ

Then the eigenvalues li; i ¼ 1; 2; . . . ; n; of A 2 AI range over the intervals

lI
i ¼ ½li; li	; i ¼ 1; 2; . . . ; n; ð15Þ

where the lower bound eigenvalues li; i ¼ 1; 2; . . . ; n; satisfy

ðAc � SiDASiÞui ¼ liui; i ¼ 1; 2; . . . ; n ð16Þ

in which ui is the eigenvector associated with the eigenvalue li; and the upper bound eigenvalues
li; i ¼ 1; 2; . . . ; n; satisfy

ðAc þ SiDASiÞui ¼ liui; i ¼ 1; 2; . . . ; n ð17Þ

in which is the eigenvector associated with the eigenvalue li:

Remarks. (a) It can be seen from Eq. (11) that ukia0; k; i ¼ 1; 2; . . . ; n; must hold.
(b) the condition (14) is added by us, because the eigenvectors can be determined ui; i ¼

1; 2; . . . ; n only in such a manner, and Eq. (13) may be significant.
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(c) The interval eigenvalues lI
i ¼ ½li; li	; i ¼ 1; 2; . . . ; n; of the interval matrix AI ¼ ½A;A	 ¼

½Ac � DA;Ac þ DA	 can be determined by solving 2n standard eigenvalue problems of the matrices
ðAc � SiDASiÞ; ðAc þ SiDASiÞ; i ¼ 1; 2; . . . ; n: Clearly, the computational efforts of Deif’s solution
theorem are quite large.

(d) It is quite difficult to determine the invariance properties of the eigenvectors’ components in
the interval matrix.
4. The vertex solution theorem

Obviously, the region expressed by the interval matrix AI ¼ ½A;A	 ¼ ðaI
ijÞ is a convex set.

From the interval matrix, the boundary matrix or extreme point matrix or vertex matrix of an
interval matrix, AI ¼ ½A;A	 is defined by

Âs ¼ Âs ¼ ðâs
ijÞ 2 AI : âs

ij ¼ aij or âs
ij ¼ aij ; a

_s

ij ¼ a
_s

ij; i; j ¼ 1; 2; . . . ; n
n o

; s ¼ 1; 2; . . . ; 2n�n: ð18Þ

Under the matrix inequality constraint condition (4a), let us consider the minimax Rayleigh
quotient of the n� n-dimensional real symmetric matrix A ¼ ðaijÞ

li ¼ liðAÞ ¼ min max
Fi
Rn u2Fi

ua0

uTAu

uTu

� �
; i ¼ 1; 2; . . . ; n: ð19Þ

Thus, li; i ¼ 1; 2; . . . ; n; are all real-valued functions defined by A ¼ ðaijÞ; since the matrix A ¼

ðaijÞ is a real symmetric.
According to the definition of the quadratic form and the inner product of two vectors, the

minimax Rayleigh quotient may also be written in the following element form

li ¼ liðAÞ ¼ min max
Fi
Rn u2Fi

ua0

Pn
k; l¼1

aklukul

Pn
j¼1

u2
j

8>>><
>>>:

9>>>=
>>>;
; i ¼ 1; 2; . . . ; n ð20Þ

subject to the element inequality constraint condition (4b).
Expression (20) and inequalities (4b) can be simply written as the extremum value problem

liextðAÞ ¼ min max
Fi
Rn u2Fi

ua0

extremum
akl2aI

kl
k;l¼1;2;...;n

Pn
k; l¼1

aklukul

Pn
j¼1

u2
j

8>>><
>>>:

9>>>=
>>>;

8>>><
>>>:

9>>>=
>>>;
; i ¼ 1; 2; . . . ; n ð21Þ

From the above relation, we can see that the eigenvalues li; i ¼ 1; 2; . . . ; n; are all linear
functions of the elements aij; i; j ¼ 1; 2; . . . ; n:
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According to the optimum theory, the extreme value problem

R ¼ extremum
akl2aI

kl
k;l¼1;2;...;n

Xn

k; l¼1

aklukul

,Xn

j¼1

u2
j

( )

is essentially the extreme value problem

T ¼ extremum
akl2aI

kl
k;l¼1;2;...;n

Xn

k; l¼1

aklukul

( )
;

i.e.

R ¼ extremum
akl2aI

kl
k;l¼1;2;...;n

Pn
k; l¼1

aklukul

Pn
j¼1

u2
j

8>>><
>>>:

9>>>=
>>>;

¼
TPn

j¼1

u2
j

¼

extremum
akl2aI

kl
k;l¼1;2;...;n

Pn
k; l¼1

aklukul

( )

Pn
j¼1

u2
j

: ð22Þ

For the extreme value problem

T ¼ extremum
akl2aI

kl
k;l¼1;2;...;n

Xn

k; l¼1

aklukul

( )
;

know that the quantity T is a linear function of the elements akl ; k; l ¼ 1; 2; . . . ; n: Based on the
extreme theorem in convex analysis, since the quantity T is a convex (or concave) function of the
elements akl ; k; l ¼ 1; 2; . . . ; n; and the interval sets aI

kl ¼ ½akl ; akl	; k; l ¼ 1; 2; . . . ; n; are all convex,
the extreme values of T will be reached on the boundary matrix or vertex matrix of the interval
stiffness matrix AI ¼ ½A;A	 ¼ ðaI

ijÞ; i.e.

T ¼ extremum
akl2aI

kl
k;l¼1;2;...;n

Xn

k; l¼1

aklukul

( )
¼
Xn

k; l¼1

âs
klukul ¼ uTÂsu:

Thus, from the expression (22), we obtain

R ¼ extremum
akl2aI

kl
k;l¼1;2;...;n

Pn
k; l¼1

aklukul

Pn
j¼1

u2
j

8>>><
>>>:

9>>>=
>>>;

¼
uTÂsu

uTu
: ð23Þ

Substitution of Eq. (23) into Eq. (21) yielding

lis ¼ liextðÂsÞ ¼ min max
Fi
Rn u2Fi

ua0

uTÂsu

uTu

( )
; s ¼ 1; 2; 3; . . . ; 2n�n; i ¼ 1; 2; . . . ; n: ð24Þ

According to the optimization theory in convex analysis, since the eigenvalues li; i ¼ 1; 2; . . . ; n;
are all convex (or concave) functions of the elements aij ; i; j ¼ 1; 2; . . . ; n; and the set aI

ij ¼
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½aij; aij	; i; j ¼ 1; 2; . . . ; n; are convex, the maximum and minimum values of li; i ¼ 1; 2; . . . ; n; occur
on the boundary matrix or extreme point matrix or vertex matrix of the interval matrix AI ¼

½A;A	 ¼ ðaI
ijÞ; i.e.

li ¼ li max ¼ max
1�s�2n�n

fliðÂsÞg; li ¼ li min ¼ min
1�s�2n�n

fliðÂsÞg; i ¼ 1; 2; � � � ; n; ð25Þ

where

lis ¼ liðÂsÞ ¼ min max
Fi
Rn u2Fi

ua0

uTÂsu

uTu

( )
¼ min max

Fi
Rn u2Fi
ua0

Pn
k; l¼1

âs
kluku

Pn
j¼1

u2
j

8>>><
>>>:

9>>>=
>>>;

s ¼ 1; 2; . . . ; 2n�n; i ¼ 1; 2; . . . ; n; ð26Þ

The stationary condition of Rayleigh’s quotient is equivalent to the algebraic eigenvalue
problem [10,11]. Thus, the eigenvalue problem corresponding to Eq. (26) reads

Âsuis ¼ lisuis; s ¼ 1; 2; . . . ; 2n�n; i ¼ 1; 2; . . . ; n; ð27Þ

where Âs ¼ ðâs
ijÞ; and uis is the eigenvector associated with the ith eigenvalue lis:

Thus, we arrive at the following:

The vertex solution theorem. If an interval matrix AI ¼ ½A;A	 ¼ ðaI
ijÞ is real symmetric, and its

vertex matrix is expressed as Âs ¼ ðâs
ijÞ; where âs

ij ¼ aij or as
ij ¼ aij ; a

_s

ij ¼ a
_s

ij; i; j ¼ 1; 2; . . . ; n; s ¼
1; 2; . . . ; 2n�n: Then the interval eigenvalues li; i ¼ 1; 2; . . . ; n; of the real symmetric interval matrix

can be determined as follows:

lI
i ¼ ½li; li	; i ¼ 1; 2; . . . ; n; ð28Þ

where the upper bound eigenvalues and the lower bound eigenvalues li; i ¼ 1; 2; . . . ; n; can be obtained
by

li ¼ li max ¼ max
1�s�2n�n

fliðÂsÞg; li ¼ li min ¼ min
1�s�2n�n

fliðÂsÞg; i ¼ 1; 2; . . . ; n; ð29Þ

where the eigenvalues lis; i ¼ 1; 2; . . . ; n; s ¼ 1; 2; . . . ; 2n�n satisfy the following standard eigenvalue

problems:

Âsuis ¼ lisuis; s ¼ 1; 2; . . . ; 2n�n; i ¼ 1; 2; . . . ; n; ð30Þ

where Âs ¼ ðâs
ijÞ; and uis is the eigenvector associated with the ith eigenvalue lis:
5. Positive semi-definite solution theorem

To overcome the difficulty in determining the invariance properties of the eigenvectors’
components of the interval matrix, and decrease the computational efforts, we presented the
positive semi-definite solution theorem for the standard interval eigenvalue problem. This
theorem is.
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Positive semi-definite solution theorem. If AI ¼ ½A;A	 ¼ ½Ac � DA;Ac þ DA	 is a real symmetric

interval matrix, and the deviation amplitude kij is a real positive semi-definite matrix, then the
eigenvalues li; i ¼ 1; 2; . . . ; n; of A 2 AI range over the intervals

lI
i ¼ ½li; li	; i ¼ 1; 2; . . . ; n; ð31Þ

where the lower bound eigenvalues li; i ¼ 1; 2; . . . ; n; satisfy

Aui ¼ liui or ðAc � DAÞui ¼ liui; i ¼ 1; 2; . . . ; n ð32Þ

in which ui is the eigenvector associated with the eigenvalue li; and the upper bound eigenvalues

li; i ¼ 1; 2; . . . ; n; satisfy

Aui ¼ liui or ðAc þ DAÞui ¼ liui; i ¼ 1; 2; . . . ; n ð33Þ

in which ui is the eigenvector associated with the eigenvalue li:

Proof. For the Courant and Fisher maxi–min theorem or the mini–max theorem of the matrix A

li ¼ min max
Fi
Rn u2Fi

ua0

uTAu

uTu

� �
; i ¼ 1; 2; . . . ; n ð34Þ

under the matrix constraint condition (4a), let us consider the extremum value problem as follows:

liext ¼ extremum
A2AI

min
Fi
Rn

max
u2Fi
ua0

uTAu

uTu

� �
¼ min max

Fi
Rn u2Fi
ua0

extremum
A2AI

uTAu

uTu

� �� �
; i ¼ 1; 2; . . . ; n: ð35Þ

Obviously, the eigenvalue li is considered a function of the elements aij; i; j ¼ 1; 2; . . . ; n; of the
matrix A ¼ ðaijÞ: Then, in terms of the natural interval extension [1,2], from Eq. (34) we can obtain

lI
i ¼ min max

Fi
Rn u2Fi
ua0

uTAI u

uTu

� �
; i ¼ 1; 2; . . . ; n: ð36Þ

It is assumed that the deviation amplitude matrix DA ¼ ðA � AÞ
�
2 is positive semi-definite.

Then, for u 2 Fi and A � A ¼ 2DA; we have

uT ðA � AÞu ¼ 2uTDAu � 0 ð37Þ

which implies

uTAu � uTAu: ð38Þ

Considering uTu40; by means of inequality (38) and the interval multiplication operation, Eq.
(36) can be written as

lI
i ¼ min max

Fi
Rn u2Fi
ua0

uTAu

uTu
;

uTAu

uTu

� �� �
; i ¼ 1; 2; . . . ; n: ð39Þ

Further, bearing in mind that

A ¼ A � 2DA ð40Þ
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we can get

min max
Fi
Rn u2Fi

ua0

uTAu

uTu

� �
¼ min max

Fi
Rn u2Fi
ua0

uTðA � 2DAÞu

uTu

� �
¼ min max

Fi
Rn u2Fi
ua0

uTAu � 2uTDAu

uTu

� �

¼ min max
Fi
Rn u2Fi

ua0

uTAu

uTu

� �
�min max

Fi
Rn u2Fi
ua0

2
uTDAu

uTu

� �
� min max

Fi
Rn u2Fi
ua0

uTAu

uTu

� �
: ð41Þ

Hence, from Eq. (39), we obtain

lI
i ¼ ½li; li	 ¼ min max

Fi
Rn u2Fi
ua0

uTAu

uTu

� �
; min max

Fi
Rn u2Fi
ua0

uTAu

uTu

� �2
4

3
5; i ¼ 1; 2; . . . ; n: ð42Þ

According to the necessary and sufficient conditions of equality of interval variables, we have
that

li ¼ min max
Fi
Rn u2Fi

ua0

uTAu

uTu

� �
; i ¼ 1; 2; . . . ; n ð43Þ

and

li ¼ min max
Fi
Rn u2Fi

ua0

uTAu

uTu

� �
; i ¼ 1; 2; . . . ; n: ð44Þ

Since the stationary condition of the Rayleigh quotient is equivalent to the algebraic eigenvalue
problem, the eigenvalue problem corresponding to the upper bound of Eq. (43) is

Aui ¼ liui; i ¼ 1; 2; . . . ; n; ð45Þ

where ui is the eigenvector associated with the eigenvalue li: Similarly, the eigenvalue problem
corresponding to the lower bound of Eq. (44) is

Aui ¼ liui; i ¼ 1; 2; . . . ; n; ð46Þ

where ui is the eigenvector associated with the eigenvalue li:
Thus, we complete the proof of the positive semi-definite solution theorem.
6. The parameter decomposition solution theorem

As we know, in most engineering problems, the real symmetric matrix A may be thought of as a
function of the structural parameter b=(bi)m, that is

A ¼ AðbÞ: ð47Þ

Let us consider the algebraic eigenvalue problem (3) subject to the parameter constraint
condition

b � b � b or bi � bi � bi; i ¼ 1; 2; . . . ;m: ð48Þ
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By means of the structural parameter vector b=(bi)m, the real symmetric matrix A can be
expressed in following form:

AðbÞ ¼
Xm

i¼1

biAi ¼ b1A1 þ b2A2 þ � � � þ bmAm; ð49Þ

where Ai is the symmetric matrix associated with the structural parameter bi.
In a practical engineering context, it is simple for the kind of the decomposition. For example,

in structural finite element analysis, Ai may be taken as the element stiffness matrices
corresponding to the structural parameter bi. In the substructure method, Ai may be taken as
the substructure matrices corresponding to the structural parameter bi.

Clearly, the elements aij; i; j ¼ 1; 2; . . . ; n; of the real symmetric matrix A are also functions of
the structural parameters b=(bi)m. Then in terms of the natural interval extension, from Eq. (48),
we can obtain

AI ¼ ½A;A	 ¼
Xm

i¼1

bI
i Ai ¼ bI

1A1 þ bI
2A2 þ � � � þ bI

mAm; ð50Þ

where bI
i ¼ ½bi; bi	; i ¼ 1; 2; . . . ;m; are the interval parameters. In terms of interval operations and

the definition for equality of intervals, we have

A ¼ ðaijÞ; A ¼ ðaijÞ ð51Þ

where

aij ¼ minfbiaij ; biaijg; aij ¼ maxfbiaij ; biaijg: ð52Þ

From the process of calculating, we can deduce that if the interval parameters bI
i ¼ ½bi; bi	; i ¼

1; 2; . . . ;m; are precise, the interval stiffness matrix AI ¼ ½A;A	 is also precise.
In engineering practice, there exists some cases: A and Ai; i ¼ 1; 2; . . . ;m may be all positive

definite matrices, but A and A are not necessarily positive definite matrices, and if the width
wðbI

Þ ¼ ðb � bÞ of the interval parameter bI
¼ ½b; b	 is large enough, A may be negative definited.

This is one reason why the width of the eigenvalue by the solution to the interval eigenvalue
problem is much larger.

In order to obtain the sharp bounds on the eigenvalues, we shall combine interval analysis with
real analysis. Let us concentrate on the following expression of the real symmetric matrices:

A ¼
Xm

i¼1

biAi; A ¼
Xm

i¼1

biAi: ð53Þ

In Eq. (53), the following relations do not generally hold:

A � A: ð54Þ

Obviously, A and A are real symmetric matrices.
Under the constraint condition (48), let us consider the extremum value problem of the

mini–max eigenvalues (35).
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Substituting Eq. (49) into Eq. (35), we arrive at

li ¼ min max
Fi
Rn u2Fi

ua0

extremum
b2bI

uT
Pm
i¼1

biAi

� �
u

uTu

8>><
>>:

9>>=
>>;

8>><
>>:

9>>=
>>; ¼ min max

Fi
Rn u2Fi
ua0

extremum
b2bI

Pm
i¼1

bi uTAiu
� �
uTu

8>><
>>:

9>>=
>>;

8>><
>>:

9>>=
>>;;

i ¼ 1; 2; . . . ; n: ð55Þ

Since bi; i ¼ 1; 2; . . . ;m; are the interval parameters, by means of the interval natural extension,
from Eq. (55), we obtain

lI
i ¼ ½li; li	 ¼ min max

Fi
Rn u2Fi
ua0

Pm
i¼1

bI
i ðu

TAiuÞ

uTu

8>><
>>:

9>>=
>>; ¼ min max

Fi
Rn u2Fi
ua0

Pm
i¼1

½bi; bi	ðu
TAiuÞ

uTu

8>><
>>:

9>>=
>>;;

i ¼ 1; 2; . . . ; n: ð56Þ

Since uTAiu � 0; by interval multiplications, from Eq. (56), we get

lI
i ¼ ½li; li	 ¼ min max

Fi
Rn u2Fi
ua0

Pm
i¼1

½biðu
TAiuÞ; biðu

TAiuÞ	

uTu

8>><
>>:

9>>=
>>;; i ¼ 1; 2; . . . ; n: ð57Þ

From the numerator of Eq. (57), using interval additions, we reach

lI
i ¼ ½li; li	 ¼ min max

Fi
Rn u2Fi
ua0

Pm
i¼1

biðu
TAiuÞ;

Pm
i¼1

biðu
TAiuÞ

� �
uTu

8>><
>>:

9>>=
>>;

¼ min max
Fi
Rn u2Fi

ua0

uT
Pm
i¼1

biAi

� �
u; uT

Pm
i¼1

biAi

� �
u

� �
uTu

8>><
>>:

9>>=
>>;; i ¼ 1; 2; . . . ; n: ð58Þ

Substituting Eqs. (53) into Eq (58), we have

lI
i ¼ ½li; li	 ¼ min max

Fi
Rn u2Fi
ua0

½uTAu; uTAu	

½uTu; uTu	

( )
; i ¼ 1; 2; . . . ; n: ð59Þ

Since uTu40; by the interval division, from Eq. (59), we obtain

lI
i ¼ ½li; li	 ¼ min max

Fi
Rn u2Fi
ua0

uTAu

uTu
;

uTAu

uTu

" #( )
; i ¼ 1; 2; . . . ; n: ð60Þ
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By the meaning of the interval number, from the interval number uTAu
.

uTu; uTAu
.

uTu
h i

; we
arrive at

uTAu

uTu
�

uTAu

uTu
: ð61Þ

Thus, we can deduce that the following expression holds:

min max
Fi
Rn u2Fi

ua0

uTAu

uTu

( )
� min max

Fi
Rn u2Fi
ua0

uTAu

uTu

( )
; i ¼ 1; 2; . . . ; n: ð62Þ

Hence, we obtain

lI
i ¼ ½li; li	 ¼ min max

Fi
Rn u2Fi
ua0

uTAu

uTu

( )
; min max

Fi
Rn u2Fi
ua0

uTAu

uTu

( )2
4

3
5; i ¼ 1; 2; . . . ; n: ð63Þ

According to the necessary and sufficient conditions of the equality of interval variables [13], we
have

li ¼ min max
Fi
Rn u2Fi

ua0

uTAu

uTu

( )
; i ¼ 1; 2; . . . ; n ð64Þ

and

li ¼ min max
Fi
Rn u2Fi

ua0

uTAu

uTu

( )
; i ¼ 1; 2; . . . ; n: ð65Þ

The stationary condition of Rayleigh’s quotient is equivalent to the algebraic eigenvalue
problem. Thus, the eigenvalue problem corresponding to the lower bound of Eq. (64) reads

Aui ¼ liui; i ¼ 1; 2; . . . ; n; ð66Þ

where ui is the eigenvector associated with li:
Similarly, the eigenvalue problem corresponding to the upper bound of Eq. (65) is given by

Aui ¼ liui; i ¼ 1; 2; . . . ; n; ð67Þ

where ui is the eigenvector associated with li:
Thus, we arrive at the following solution theorem:

The parameter decomposition solution theorem. Let the eigenvalues li; i ¼ 1; 2; . . . ; n; be the

function of parameters bi; i ¼ 1; 2; . . . ;m; i.e. li ¼ liðb1; b2; . . . ; bmÞ; i ¼ 1; 2; n: If the real symmetric
matrix A can be decomposed as A ¼

Pm
i¼1biAi; and the parameters bi; i ¼ 1; 2; . . . ;m; are interval

parameters, i.e. bI
i ¼ ½bi; bi	; i ¼ 1; 2; . . . ;m; then eigenvalues li; i ¼ 1; 2; . . . ; n; range over the

interval

lI
¼ ½l; l	 ¼ ðlI

i Þ; lI
i ¼ ½li; li	; i ¼ 1; 2; . . . ; n; ð68Þ
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where the lower bounds li satisfy

Aui ¼ liui; i ¼ 1; 2; . . . ; n ð69Þ

in which A ¼
Pm
i¼1

biAi; ui is the eigenvector associated with li and the upper bounds li satisfy

Aui ¼ liui; i ¼ 1; 2; . . . ; n; ð70Þ

where A ¼
Pm

i¼1biAi; and ui is the eigenvector associated with li:
7. Numerical examples

A plate and a truss structure are analyzed to illustrate the validity of the proposed vertex
solution theorem, the positive semi-definite solution theorem and the parameter decomposition
solution theorem in this paper. Numerical examples consist of a flat square plate and an eight-bar
truss. In each problem, some structural parameters are taken as uncertain variables and the others
are thought of as deterministic variables. Because the standard interval eigenvalue problem is
discussed, our object is to calculate the interval eigenvalues or the upper and lower bounds on
eigenvalues of the dynamic matrix A ¼ M�1K of the structural system with uncertain-but-
bounded parameters, and to compare the presented vertex solution theorem, the positive semi-
definite solution theorem and the parameter decomposition solution theorem with Deif’s solution
theorem in computational aspects and accuracies.

In the two numerical examples, no matter how the uncertain factor b changes, the upper
bounds predicted by the vertex solution theorem are equal to the upper bounds determined by the
Deif’s solution theorem for the eigenvalues of structures, and they are denoted by li: Likewise, the
lower bounds produced by the vertex solution theorem are equal to the lower bounds calculated
by the Deif’s solution theorem for the eigenvalues of structures, and they are denoted by li: The
upper and lower bounds of the eigenvalues obtained by the positive semi-definite solution theorem
are, respectively, represented by mi and m

i
: The upper and lower bounds of the eigenvalues

obtained by the parameter decomposition theorem are, respectively, expressed by gi and g
i
:

7.1. Example I. A flat square plate

The first numerical example deals with the eigenvalue analysis of the system dynamic matrix of
a flat square plate with uncertain-but-bounded parameters as shown in Fig. 1. In this example, the
Young’s modulus E, the Poisson ratio n and the density r of the plate are considered uncertain-
but-bounded parameters, and they are expressed by, respectively: EI ¼ ½Ec � 2bEc;Ec þ 2bEc	;
nI ¼ ½nc � bnc; nc þ bnc	 and rI ¼ ½rc � 2brc;rc þ 2brc	; where Ec ¼ 2:1� 1011 N=m2; nc ¼ 0:3;
rc ¼ 7800:0 kg=m3; and b is the uncertain factor. The other structural parameters are taken as
deterministic values, and they are: the width of the plate L ¼ 0:3 m; the thickness of the plate
where t ¼ 1 mm: The interval eigenvalues or the upper and lower bounds on the eigenvalues of
the dynamic matrix of the flat square plate, which are calculated by the Deif’s solution theorem,
the proposed vertex solution theorem and the positive semi-definite solution theorem, are plotted
in Fig. 3. Only the first eight order eigenvalues are given.
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Fig. 1. A flat square plate divided by triangle constant–strain elements.
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From Fig. 3, it can be seen that for the any order eigenvalue of the dynamic matrix of the flat
square plate, the following inequality holds

li � m
i
� mi � li; i ¼ 1; 2; . . . ; 8:

7.2. Example II. Eight-bar truss

The second numerical example deals with the interval eigenvalues of the dynamic matrix of the
eight-bar truss with uncertain-but-bounded parameters, as shown in Fig. 2. In this numerical
example, the uncertain-but-bounded parameter are taken as the Young’s moduli of the bars of the
eight-bar truss, they are: EI

i ¼ ½Ec � bEc;Ec þ bEc	; i ¼ 1; 2; . . . ; 8; where b is the uncertain factor
and Ec ¼ 2:1� 1011 N=m2: The other structural parameters are considered as deterministic
variables, they are the cross-sectional areas of the other bars: Ai ¼ 2:0� 10�3 m2; i ¼ 1; 2; 3; 4; 6;
Ai ¼ 1:0� 10�3 m2; i ¼ 5; 7; 8 and the mass density: r ¼ 7800:0 kg=m3 (see also Fig. 3).

The interval eigenvalues or the upper and lower bounds on the eigenvalues of the dynamic
matrix of the eight-bar truss, which are calculated by the Deif’s solution theorem and the
proposed vertex solution theorem, the positive semi-definite solution theorem and the parameter
decomposition solution theorem, are shown in Fig. 4.

From Fig. 4, it can be seen that for the i=1,2,4,5,6,7 order eigenvalue of the dynamic matrix of
the eight-bar truss, the following inequalities hold:

li � m
i
� g

i
� gi � mi � li:
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Fig. 2. An eight bar truss.
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For the i=3 order eigenvalue, the following inequality holds:

l3 ¼ m
3
� g

3
� g3 � m3 ¼ l3:

However, for the i=8 order eigenvalue, the following inequality holds:

l8 ¼ g
8
� m

8
� m8 � g8 ¼ l8:

In the two cases, from Figs. 3 and 4, we can see that as one might expect the widths of the upper
and lower bounds on the eigenvalues of the dynamic matrices of the structural systems show
growth with increased uncertainty of the uncertain factor or the structural parameters. It is
observed that the widths of the upper and lower bounds, which are calculated by the parameter
decomposition theorem, on the eigenvalues of the dynamic matrices of the structural systems get
larger and larger with the order of the eigenvalues increasing. However, the widths of the upper
and lower bounds, which are obtained by the positive semi-definite theorem, on the eigenvalues of
the stiffness matrices of the structural systems get smaller and smaller with the order of the
eigenvalues increasing.
8. Conclusions

In this paper, uncertainties in structural parameters are considered through the so-called non-
probabilistic interval formulations. Uncertain structural parameters represented by interval
numbers, the vertex solution theorem, the positive semi-definite solution and the parameter
decomposition solution theorem have been presented to compute the upper and lower bounds on
the eigenvalues of the standard eigenvalue problem of structures with uncertain-but-bounded
parameters. The respective performances of the presented theorems have been discussed.
We presented the vertex solution theorem a unconditional, and the positive semi-definite solution
theorem and the parameter decomposition solution theorem have less limitary condition
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Fig. 3. Interval eignvalues of a flat square plate with the factor b.
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compared with Deif’s solution theorem. By comparing with Deif’s solution theorem, numerical
examples are presented to illustrate the effectiveness of the vertex solution theorem, the positive
semi-definite solution and the parameter decomposition solution theorem for computing the
upper and lower bounds on the eigenvalues of the standard eigenvalue problem of structures with
uncertain-but-bounded parameters. In order to treat the eigenvalue problem entirely, the problem
of the eigenvector should also be solved. The effects of the uncertainties or imprecision of the
structure’s parameters on the eigenvalues of structures need further study.
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